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Abstract

In this article, a combined analytical and numerical effort is presented for modeling structural acoustics
of sound transmission through a flexible panel into an enclosure. A spherical wave, which is generated by a
noise source located in the near field, is transmitted into a rectangular enclosure through a flexible panel.
Piezoelectric patches, which are bonded symmetrically to the top and bottom surfaces of the panel, are used
as actuators. Microphone sensors are used inside and outside the enclosure for acoustic pressure
measurements. The developed model accounts for panel interactions with both the external sound field and
the enclosed sound field, and this feature makes it appealing for model-based active noise control schemes.
For different actuator–sensor pairs, the numerically obtained frequency–response functions from the model
are found to be in good agreement with the corresponding experimental observations.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Control of noise and vibration is important for many civil, industrial, and defense applications.
In Active Structural Acoustical Control (ASAC) [1], which can be considered a modified version of
Active noise Control (ANC), one takes advantage of vibrating structural elements as secondary
noise sources to cancel the sound fields generated by a primary noise source (e.g., Refs. [2–5]).
However, to develop model-based ASAC schemes, one needs a good understanding of the
structural–acoustic interactions in the considered system.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Considerable effort has been devoted to the modeling of structural acoustics, in particular, for
enclosures with flexible boundaries. The efforts of Dowell and Voss [6] and Lyon [7] represent
some of the early investigations into modeling of vibrations of plates backed by a cavity. Guy
developed a model for the steady-state transmission of oblique sound waves through a thin panel
backed by a rectangular room [8]. In his work, the oblique incident wave was considered as a
combination of a normally incident wave and a wave with grazing incidence. Balachandran et al.
[9] have developed a mechanics-based analytical model to address the interactions between a panel
and the sound field inside a rectangular enclosure. In this work, piezoelectric patches bonded to
the panel are used as actuators, which are also included in the modeling. Geng et al. [10] extended
the work of Balachandran et al. [9] to the case of an irregular enclosure with two flexible panels.
In the efforts of Ro and Baz [11], finite-element models are constructed for similar problems,
while Nefske et al. [12] used a finite-element technique to model an automobile passenger
compartment with flexible boundaries. Kim and Kim [13] developed a mass–damper–spring
system to address the case of a thin panel that partially covers a ‘‘small’’ rectangular cavity. Due
to the low number of degrees of freedom used in this model, its range of applicability is limited to
the low-frequency range. Kim and Brennan used the impedance-mobility approach for modeling
structural–acoustic coupling, and they applied that approach to a rectangular enclosure with a
flexible panel (e.g., Refs. [14,15]). Their work has been extended by Lau and Tang to investigate
the effect of the strength of the structural–acoustic coupling [16]. As in the work of Balachandran
et al. [9], Chang and Nicholas [17] used Green’s functions to study the frequency response of
structural–acoustic systems. This approach is suitable for frequency–response analysis, but not
convenient for control designs that require time–domain models.
All of the above-mentioned studies are restricted to the interaction between the structure and

cavity and they do not consider the sound radiation from the panel into the external field; this
aspect is important for feedforward control schemes. In addition, in all of the previous studies, the
case where the panel–enclosure system is located in the near field of the noise source has not been
considered; in these cases, the sound–pressure field acting on the panel is not uniform [18]. In
systems such as a helicopter cabin, the noise source is ‘‘close’’ to the enclosure that the assumption
of plane wave incidence may not be a good approximation. For the case of a spherical wave, the
air particle velocity is no longer in phase with the acoustic pressure, and, in addition, the pressure
distribution on the flexible panel is neither constant nor linear, as it is for a plane wave with
normal or oblique incidence.
In this paper, the system of interest is a rectangular enclosure with rigid walls and one flexible

panel. Noise is generated by an external noise source, which is located near the flexible panel, and
transmitted into the enclosure through the flexible panel. Piezoceramic patches that are mounted
on the flexible boundary are used as actuators. The noise source and/or the piezoceramic
actuators can be used to excite the system. Polyvinylidene fluoride sensors are used on the flexible
boundary, and microphone sensors are used inside and outside the enclosure. A mechanics-based
model has been developed to analyze the sound fields inside the rectangular enclosure and the
vibrations of the flexible boundary, as well as the structural–acoustic interactions. In addition, the
sound field outside the enclosure is also taken into account to construct the system model. This
work is an extension of the work carried out by Balachandran et al. [9], where structural–acoustic
interactions were studied in the presence of a plane wave normal to the flexible panel. By contrast,
in the current work, the more general case of a spherical wave is considered. In addition, the
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sound radiated by the panel into the external field is also taken into account. Although the model
has been developed for ASAC schemes, it is also applicable for the development of other control
schemes.
The rest of this article is organized as follows. In the next section, the experimental arrangement

is described, and then, the system model is developed in the following section. Next, numerical
and experimental results are presented and discussed.
2. Experimental arrangement

In Figs. 1–3, the experimental arrangement and its different components are shown. As shown in
Fig. 1, a loudspeaker is located above a rectangular enclosure and this loudspeaker is used as an
external noise source. The rectangular enclosure has five rigid walls made from 2.54 cm thick
acrylic sheets and a flexible panel made from 0.0625 cm thick aluminum material. This aluminum
panel, which is clamped along all the four edges, has the following dimensions: Lxp ¼ 66:04 cm and
Lyp ¼ 50:80 cm: The inner dimensions of the enclosure are 60:96 cm� 45:72 cm� 50:80 cm: The
speaker, which has a diaphragm of 38.10 cm diameter, is mounted at a distance of 76.20 cm from
the top of the enclosure and this speaker is driven by using one of the channels of a stereo amplifier.
In Fig. 2, the locations and the geometry of the piezoceramic (PZT-5H) patches are shown.

These patches are symmetrically mounted on the top and bottom surfaces of the panel. The
actuators are arranged in a grid with the row labels being {A, B, C} and the column labels being
{1, 2, 3}, as shown in Fig. 2(a). Each of these actuators has the following dimensions: Lxpzt ¼

5:08 cm; Lypzt ¼ 2:54 cm; and thickness hpzt ¼ 0:0254 cm: In each pair, the actuators are wired out
Fig. 1. Experimental arrangement: (a) photograph of the arrangement and (b) schematic representation.
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Fig. 2. Distributed actuators and sensors: (a) spatial locations on the flexible panel and (b) panel-PZT patch geometry.
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of phase to cause extension in one patch and contraction in the other, resulting in a ‘‘localized’’
bending moment at the edges of the pair (see Fig. 2(b) for electrical input and actuator pair
geometry). The dielectric constant of the piezoelectric material is d31 ¼ �274� 10�12 m=V and the
material density is 7500 kg=m3: Polymer-based piezo (PVDF) film sensors (DT2052 K/L) are
bonded to the top surface of the panel close to the locations of the actuator pairs. The centers of
the PVDF sensors, which are labeled P-B2 and P-C3, are located at (33.02 cm, 29.21 cm) and
(49.52 cm, 41.28 cm), respectively.
Condenser microphones are used as sensors to measure the pressure levels inside and outside

the enclosure. The external microphone (referred to here as the reference microphone), which
provides the reference signal to the control system, is placed at a height of 50.80 cm from the
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Table 1

Characteristics of different microphones used in the experimental setup

Microphone (Brüel & Kjær) Ref. Mic. Mic. 1 Mic. 2 Mic. 3

Model number B&K 4134 B&K 4145 B&K 4145 B&K 4133

Location inches 12, 9, 40 12, 9, 41
2

11
4
; 4, 91

4
223

4
; 13

4
; 11

4

ðx; y; zÞ cm 30.5, 22.9, 101.6 30.5, 22.9, 10.8 3.2, 10.2, 23.5 57.8, 4.4, 3.2

Diameter inches 1
2

1 1 1
2

cm 1.3 2.5 2.5 1.3

Sensitivity (mV/Pa) 12.5 50 50 12.5

Polarization voltage (V) 200 200 200 200

Frequency range (Hz) 4–20k 2.6–18k 2.6–18k 4–40k

Dynamic range (dB) 21–160 11–146 11–146 22–160
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panel-enclosure system. The internal microphones, which are labeled as Mic. 1, Mic. 2, and Mic. 3
and shown in Fig. 3, are arranged so that all of the enclosure modes can be sensed by one or the
other. The locations and characteristics of the microphones are given in Table 1. The inputs to the
actuators and the outputs from the sensors are realized by using a personal computer and an
interface.
3. Analytical model

In this section, a model is developed for the panel–enclosure system shown in Fig. 1. PZT pair
patches are considered to be bonded to the flexible panel, and each pair is assumed to produce a
pure moment actuation when the patches are actuated as shown in Fig. 2. The flexible panel is
exposed to an external pressure excitation created by a spherical wave generated by a sound
source mounted above the enclosure. As shown in the schematic of the panel–enclosure system
(Fig. 4), two coordinate systems are used to describe the system: the first one with the origin at 0c

is used for the enclosure, and the second one with the origin at 0p is used for the panel. The panel
may have larger dimensions than the enclosure.
Throughout the analysis, bold notation is used to denote vector quantities and uniform ambient

values are indicated with the subscript notation ð�Þ0: Assuming that the fluctuations in the
pressure and density are small compared to their ambient values, and after including a damping
term with the damping coefficient ga; the homogeneous wave equation describing the sound
pressure inside the enclosure can be obtained as

r2p �
1

c20

q2p
qt2

� ga

qp

qt
¼ 0; (1)

where p(x, y, z, t) is the air pressure inside the cavity, the speed of sound is given by [19]

c ¼

ffiffiffiffiffiffi
dp

dr

s �����
p0;r0

(2)
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Fig. 4. (a) Schematic representation of panel–enclosure system used in model development, (b) detail A.
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and r0(x, y, z, t) is the ambient air density. For the considered panel–enclosure system with one
flexible boundary and five rigid boundaries, the boundary conditions take the form

qp

qn
¼

0; at rigid boundary;

�r0ðq
2w=qt2Þ; at flexible boundary;

�
(3)

where w(x,y,t) is the normal displacement of the flexible boundary and n is the direction normal to
the boundary. For the considered system, the pressure field inside the enclosure is assumed to have
the form

pðx; y; z; tÞ ¼
X1
i¼1

Fiðx; y; zÞqiðtÞ ¼
X1
i¼1

ciðxÞfiðyÞGiðzÞqiðtÞ; (4)

where the spatial functions are orthogonal functions, which will be specified later.
In Eq. (4), the functions Fiðx; y; zÞ are used to describe the spatial field and the functions qiðtÞ

are used to describe the associated temporal part of the pressure response. After substituting
Eq. (4) into Eq. (1), integrating over the volume of the cavity, making use of the orthogonality
conditions, and the boundary conditions given by Eq. (3), the equations governing the modal
amplitudes can be obtained in the form

1

c20

d2qi

dt2
þ ga

dqi

dt
þ k2

i � Gi
dGi

dz

� �����
z¼Lzc

" #
qi ¼ 0; (5)

where

k2
i ¼

Z Lxc

0c

dci

dx

� �2

dx þ

Z Lyc

0c

dfi

dy

� �2

dy þ

Z Lzc

0c

dGi

dz

� �2

dz

" #
: (6)

The panel–piezo system is treated here as a multi-laminate system that consists of three plies in
places where the piezo pair patches are bonded to the panel, and as a single ply panel otherwise.
Making use of the assumptions used in earlier studies (e.g., Ref. [9]), the panel displacement can
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be described by

Dr4w þ rphp €w þ gp _w ¼ ðpin � poutÞ �
XK

i¼1

ðhp þ hpztÞEpztd31

ð1� nÞ
r2wiV iðtÞ; (7)

where the panel stiffness constant D is given by

D ¼
Eph3p

12ð1� n2Þ
: (8)

Clamped boundary conditions are assumed along all edges of the panel. In Eq. (7), the quantity E
is the panel material’s Young’s modulus, n is the Poisson’s ratio, the quantities with subscripts pzt

and p represent the constants related to the piezo patches and the flexible panel, respectively, and
ViðtÞ is the voltage input to the ith piezo patch. The quantity wi ¼ wðxi; yi) is unity, where the ith
piezo patch pair is present, and it is zero elsewhere, and K is the total number of piezo patch pairs
bonded to the panel. Along the lines of previous work [9], the Poisson’s ratios for the panel and
piezo material are assumed to be the same.
In Eq. (7), the external forcing term is the pressure loading (pin � pout), where poutðx; y; tÞ is the

external pressure loading on the panel and pinðx; y; tÞ is the internal pressure loading on the panel
(refer to Fig. 4). The external loading pout is the sum of two pressure components, one
corresponding to the incident wave with pressure pi; and the other corresponding to the
reflected wave with pressure pr: By examining the structure–acoustic interface, it can be shown
that pr ¼ pi þ pd ; where pd is the radiation-damping term. Then, Eq. (7) can be rewritten in terms
of pi and pin as

Dr4w þ rphp €w þ gp _w þ pd ¼ pin � 2pi �
Xk

i¼1

ðhp þ hpztÞEpztd31

ð1� nÞ
r2wiV iðtÞ: (9)

In Eq. (9), pd is frequency dependant and it approaches r0c0 _w for a plane wave, thus the term
ðgp _w þ pdÞ is considered throughout this section as an effective damping term. In practice, the
associated damping coefficient is usually experimentally determined, and this is also carried out
here as discussed later. In addition, to obtain Eq. (9), the wave transmitted through the flexible
panel has been neglected in the analysis. This approximation is reasonable for acoustic rigid

boundaries, when the wave is incident on a medium that has a high characteristic impedance
compared to that of the incident medium. In the present case, the specific acoustic impedance of
air is roughly 0.003% of the specific acoustic impedance of aluminum.
The panel response is assumed to be of the form

wðx; y; tÞ ¼
X1
i¼1

aiðxÞbiðyÞZiðtÞ; (10)

where the ZiðtÞ are temporal functions and the appropriate expressions for the spatial functions
ai(x) and bi(y) are obtained from the work of Blevins [20]. Next, making use of the boundary
condition given by Eq. (3) at the flexible boundary, the panel–enclosure system is integrated with
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the panel–piezo system to obtain

1

c20
€qjðtÞ þ ga _qjðtÞ þ k2

j qjðtÞ þ r0Gjjz¼Lzc

X1
i¼1

B
ðcÞ
ij ðxÞB

ðcÞ
ij ðyÞ€ZiðtÞ ¼ 0: (11)

The last term on the left-hand side of Eq. (11) represents the structural–acoustic coupling in the
system and the spatial coefficients in the last term will be defined shortly.
At this stage, it is assumed that the spatial functions in Eq. (4) are given by rigid-body enclosure

modes; that is,

ciðxÞ ¼
Aiffiffiffiffiffiffiffi
Lxc

p cos
lipx

Lxc

� �
; fiðyÞ ¼

Aiffiffiffiffiffiffiffi
Lyc

p cos
mipy

Lyc

� �
; GiðzÞ ¼

Aiffiffiffiffiffiffiffi
Lzc

p cos
nipz

Lzc

� �
; (12)

where the indices li; mi; and ni are associated with the spatial functions of the ith rigid enclosure
mode, along the x, y, and z directions, respectively. The constants Ai are chosen to satisfy the
orthogonality conditions. Then, making use of Eqs. (6) and (12) in Eq. (11), it is found that

1

c20
€qjðtÞ þ ga _qjðtÞ þ

l2j p
2

L2
xc

þ
m2

j p
2

L2
yc

þ
n2j p

2

L2
zc

 !
qjðtÞ þ r0

ð�1Þ jAjffiffiffiffiffiffiffi
Lzc

p
X1
i¼1

B
ðcÞ
ij ðxÞB

ðcÞ
ij ðyÞ€ZiðtÞ ¼ 0: (13)

The equations governing the panel modal amplitudes are obtained by making use of Eqs. (4), (9),
(10), and (12). After approximating pd � r0c0 _w and making use of the orthogonality properties
and the boundary conditions, the equation governing each panel modal amplitude is obtained as

rphp €ZjðtÞ þ ½gpj þ r0c0� _ZjðtÞ þ D½I jðxÞ þ I jðyÞ�ZjðtÞ þ 2D
X1
i¼1

I ijðxÞI ijðyÞZiðtÞ

¼
X1
i¼1

ð�1ÞiAiffiffiffiffiffiffiffi
Lzc

p B
ðpÞ
ij ðxÞB

ðpÞ
ij ðyÞqiðtÞ � 2

Z
Ap

ajbjp
s
i ðx; yÞdAp

" #
pt

iðtÞ

�
Xk

i¼1

Z
Ap

ajbj

ðhp þ hpztÞEpztd31

ð1� nÞ
r2wðxi; yiÞdAp

" #
ViðtÞ; ð14Þ

where the different spatial integrals in Eqs. (13) and (14) are given by

B
ðpÞ
ij ðxÞ ¼

Z Lxc

0c

ciðxÞajðxÞ dx ¼ B
ðcÞ
ji ðxÞ; B

ðpÞ
ij ðyÞ ¼

Z Lyc

0c

fiðyÞbjðyÞ dy ¼ B
ðcÞ
ji ðyÞ;

I jðxÞ ¼

Z Lxp

0

ajðxÞ
d4ajðxÞ

dx4
dx; I jðyÞ ¼

Z Lyp

0

bjðyÞ
d4bjðyÞ

dy4
dy;

I ijðxÞ ¼

Z Lxp

0

d2aiðxÞ

dx2
ajðxÞdx; I ijðyÞ ¼

Z Lyp

0

d2biðyÞ

dy2
bjðyÞdy (15)

and the incident pressure loading has been expanded as

piðx; y; tÞ ¼ ps
i ðx; yÞp

t
iðtÞ: (16)
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Eqs. (13) and (14) are then rearranged in matrix form:

Mpp 0

Mcp Mcc

� �
€g

€q

� �
þ

Dpp 0

0 Dcc

� �
_g

_q

� �
þ

Kpp Kpc

0 Kcc

� �
g

q

� �
¼

Fp FV

0 0

� �
pt

i

V

� �
; (17)

where the off-diagonal terms in the M and K matrices describe the structural–acoustic coupling
and the different quantities are given by

Mpp ¼ diag½rphp�; Mcc ¼ diag
1

c20

� �
;

Mcp ¼ ½Mcpði; jÞ� ¼ r0
ð�1ÞiAiffiffiffiffiffiffiffi

Lzc

p B
ðcÞ
ji ðxÞB

ðcÞ
ji ðyÞ

� �
;

Dpp ¼ diag½gpj þ r0c0� ¼ diag½2zpjopjrphp þ r0c0�; Dcc ¼ diag½gaj� ¼
1

c20
diag½2zcjocj�;

Kpp ¼ ½kppði; jÞ� ¼ 2D½I jiðxÞI jiðyÞ� þ Ddiag½I iðxÞ þ I iðyÞ�;

Kcc ¼ diag
l2i p

2

L2
xc

þ
m2

i p
2

L2
yc

þ
n2i p

2

L2
zc

" #
;

Kpc ¼ ½kpcði; jÞ� ¼ �
ð�1Þ jAjffiffiffiffiffiffiffi

Lzc

p B
ðpÞ
ji ðxÞB

ðpÞ
ji ðyÞ

� �
;

Fp ¼ �2

Z
Ap

aibip
s
i dAp

 !
;

FV ¼ ½FV ði; jÞ� ¼ �

Z
Ap

aibi

ðhp þ hpztÞEpztd31

ð1� nÞ
r2wðxj; yjÞdAp

" #
: (18)
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Eq. (17) represents the time–domain model developed for the system shown in Fig. 4. After
determining the modal amplitudes from these equations, the panel displacement w(x,y;t) and the
pressure inside the enclosure p(x,y,z;t) can be obtained from the relations

wðx; y; z; tÞ

pðx; y; z; tÞ

� �
¼

CðwÞ 0

0 CðpÞ

" #
g

q

� �
; (19)

where

CðwÞ
¼ ½aiðxÞbiðyÞ�; CðpÞ

¼ ½ciðxÞfiðyÞGiðzÞ�: (20)

After examining the pressure forcing coefficients Fp given in Eq. (18), it is known that a plane
wave incidence with a wave front parallel to the panel will not excite any vibration modes with
even x and/or y indices. Furthermore, from the structure of the coupling mass matrix Mcp and
stiffness matrix Kpc given in Eq. (18), it is known that the acoustic mode (0,0,1) is coupled only to
the odd � odd panel vibration modes, the acoustic mode (1,0,0) is coupled only to the even � odd
Table 2

Undamped natural frequencies of the coupled system and the damping-factor values used in the analytical model for

the different panel and cavity modes

Panel modes Cavity modes Natural frequencies (Hz) Damping factors

(1,1) 41.6 0.0219

(2,1) 73.7 0.010

(1,2) 95.0 0.010

(2,2) 124.6 0.001

(3,1) 125.6 0.050

(3,2) 174.1 0.030

(1,3) 176.5 0.050

(4,1) 196.1 0.050

(2,3) 205.2 0.100

(4,2) 243.0 0.050

(3,3) 252.6 0.020

(1,0,0) 281.3 0.010

(5,1) 284.7 0.040

(1,4) 285.5 0.001

(2,4) 313.8 0.001

(4,3) 319.5 0.001

(5,2) 330.7 0.001

(0,0,1) 337.6 0.080

(3,4) 360.2 0.001

(0,1,0) 375.1 0.006

(5,3) 405.6 0.005

(1,5) 421.6 0.008

(4,4) 425.5 0.001

(1,0,1) 439.5 0.006

(2,5) 449.9 0.001

(1,1,0) 468.9 0.001

(3,5) 495.8 0.004
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panel vibration modes, and the acoustic mode (0,1,0) is coupled only to the odd � even panel
vibration modes. This coupling can be understood on the basis of the spatial shapes of the
different modes in the xyz coordinate system.
In further development, the pressure source outside the enclosure is assumed to generate a

harmonic excitation. The panel–enclosure system response obtained for this excitation is used to
construct frequency–response functions that are compared to experimental data. The response
obtained is used to determine the pressure field outside the enclosure. A schematic for the
panel–external pressure field system is shown in Fig. 5. In order to determine the temporal
component pop(t) of this pressure field, an observation point located at a distance rop; s from the
noise source is considered. This point is located in between the noise source and the enclosure. The
acoustic pressure at the considered observation point is treated as a superposition of pressures
generated by the following two sources: (1) the acoustic pressure pop1(t) generated by the external
or primary (noise) source and (2) the acoustic pressure pop2(t) reflected back from the flexible
panel as well as that generated by the panel vibrations excited by the noise source and/or by
providing inputs into the PZT patches. The external noise source is considered as a circular
‘‘unbaffled simple’’ sound source, with radius rs and uniform surface velocity u(t); this source is
located at an arbitrary location (xs;ys;zs) above the panel and it is assumed to transmit sound
downwards only. Then, the source strength can be written as Q ¼ pr2s u(t). For a harmonic
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Fig. 6. Transfer function GMic:1;A2: comparison of model result with experimental data: dotted lines are experimental

data and continuous lines are analytical predictions.
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excitation; uðtÞ ¼
S
ejot; the equation describing pop1(t) is of the form [19]

pop1 ¼
r0r

2
s

4rop;s
e�jkrop;sasðtÞ ¼

r0r
2
s

4rop;s
e�joTop1asðtÞ; (21)

where the surface acceleration as(t) is jo [ ejot; k is the wavenumber and equal to o/c0; and the
time-delay constant Top1 is given by

Top1 ¼
rop;s

c0
: (22)

The pressure pop2(t) generated from the panel motions can be determined by dividing the panel
into infinitesimal elements of area dA, each of which is considered as a ‘‘baffled simple’’ source of
strength dQ= _wðx; y; tÞ dA. This pressure component is given by

pop2ðtÞ ¼
r0
2p

Z Z
Ap

€wðx; y; tÞ
e�jkrop;p

rop;p
dA; (23)

where rop;p(x,y) is the location of the observation point relative to point (x,y) on the panel. Making
use of Eq. (10), pop2(t) can be represented in the form

pop2ðtÞ ¼
XM
i¼1

C
ðopÞ
i €ZiðtÞ: (24)
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Fig. 7. Transfer function GMic:3;A2: comparison of model result (solid line) with experimental data (dotted line).
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where

C
ðopÞ
i ¼

r0
2p

Z Z
Ap

aiðxÞbiðyÞ
e�jkrop;p

rop;p
dA: (25)

Following a similar procedure, the pressure field pi(x,y,t) at a point (x,y) just above the panel
surface can be determined as

piðx; y; tÞ ¼
r0r

2
s

4

e�jkrp;s

rp;s
asðtÞ; (26)

where rp;s(x,y) is the distance from the noise source to the point (x,y) on the panel.
Making use of Eq. (26) in Eqs. (17) and (18) leads to

Mpp 0

Mcp Mcc

� �
€g

€q

� �
þ

Dpp 0

0 Dcc

� �
_g

_q

� �
þ

Kpp Kpc

0 Kcc

� �
g

q

� �
¼

Fa FV

0 0

� �
as

V

� �
; (27)

where

Fa ¼ �
r0r

2
s

2

Z Z
Ap

aiðxÞbiðyÞ
e�jkrp;s

rp;s
dAp

 !
: (28)
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After solving Eq. (27) for the modal amplitudes in the frequency domain, the total pressure at an
observation point above the enclosure can be determined from

popðtÞ ¼ � C̄
ðopÞ
Kpp þ jo C̄

ðopÞ
Dpp

h i
g � C̄

ðopÞ
Kpc

h i
qþ C̄

ðopÞ
FV

h i
Vþ C̄

ðopÞ
Fp þ DðopÞ

� �
as; (29)

where

C̄
ðopÞ

¼ CðopÞM�1
pp ¼

C
ðopÞ
i

rphp

" #
; DðopÞ ¼

r0r
2
s

4rop;s
e�joTop1 : (30)

As can be seen, the quantity Fa given by Eq. (28) is a function of the frequency o: It is expected
that each of the modal weightings of Fa has a band-pass filter shape, where, in the considered
bandwidth, the corresponding panel modes interact with the excitation-pressure field. To further
understand the characteristics, the wave propagation term in Eqs. (25) and (28) is expanded as a
Taylor series about a nominal value r�R as

e�jkr

r
�

e�jkR

R
3þ 2jkR � 1

2
ðkRÞ

2
� �

þ
r

R

� �
½�3� 3 jkR þ ðkRÞ

2
�

n
þ

r

R

� �2
1þ jkR � 1

2
ðkRÞ

2
� ��

þ Oðr � RÞ
3: ð31Þ
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Fig. 9. Transfer function GRef :Mic:;B2: comparison of model result (solid line) with experimental data (dotted line).
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From Eq. (31), it is clear that when the separation jr � Rj approaches zero, which is the acoustic
far field condition, the series expansion reduces to [e�jkR/R] that can be obtained by considering a
plane wave, instead of a spherical wave, with a separation R, which is necessarily not equal to the
vertical distance between the sound source and the observation point.
As developed here, the current model has the capability of handling spherical incident waves.

Other forms of incidence can also be captured by appropriately modeling the term ps
i ðx; yÞ in

Eq. (18); for example, an oblique incidence where the wavelength is less than the dimensions of the
flexible panel can be studied. An important and unique aspect of the model is that the
structure–acoustic interactions for the internal as well as external sound fields are taken into
account.
4. Results and discussion

To obtain the numerical results of this section, the analytical model has been truncated to take
into account the first 27 modes; these 27 modes include 22 panel modes and five enclosure modes.
The resonance frequencies associated with these modes lie in a frequency span extending up to
500Hz, with the highest resonance frequency being 495.75Hz (please refer to Table 2). In the
(x,y,z) coordinate system, the three indices of each acoustic mode correspond to the x, y, and z
directions and the two indices of each vibration mode correspond to the x and y directions. In
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Table 2, the numerical values of the different system natural frequencies, as predicted by the
analytical model, are tabulated.
To examine why a spherical wave incidence should be considered, it is noted that the difference

in pressure amplitude of the spherical wave incident at the panel varies over a 12% range across
the panel area in the considered experimental arrangement. For excitation frequencies above
227Hz, the phase difference between the waves incident at the panel center and corners is more
than 45�; and for excitation frequencies above 455Hz, this phase difference exceeds 90�: For this
latter case, this would mean that while there is a pressure peak at the panel center, there is a
pressure node at another panel corner. For these cases, the plane-wave approximation will not be
a valid one.
In Figs. 6–12, the numerical results obtained from the analytical model are compared to the

experimentally obtained frequency–response functions. In each case, the nomenclature Gy;x is
used to represent the transfer function between the output y and the input x. The inputs in these
figures are either the acceleration of the speaker diaphragm, as; or the voltage input to one of the
PZT patches, whose labels have been explained in Section 2. The outputs are the pressures at the
reference microphone, microphone Mic. 1, and microphone Mic. 3. To obtain the experimental
data, a white noise voltage signal was used as the excitation signal and the results obtained are
shown over a 400Hz bandwidth. Since the highest resonance frequency of the included modes is
495.75Hz, the contribution of the unmodeled modes is insignificant in this frequency range. The
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frequency–response values for frequencies less than 20Hz could not be realized due to the
limitations of the equipment used in the experimental arrangement. The predictions shown in
Figs. 6–8 illustrate the panel interactions with the enclosed sound fields, and the predictions
shown in Fig. 9 illustrate the panel interaction with the external acoustics. The results shown in
Figs. 10 and 11 illustrate the interactions between the three system components: the external
sound fields, the panel, and the enclosed sound fields. Good agreement is seen between the
experimental and numerical results. From the comparisons, it is clear that the present model does
not perfectly capture the stiffness contribution at the first mode. It is believed that this difference
may arise due to the assumption of weak structural–acoustic coupling considered in the
mathematical model, which may not be valid in the low-frequency range. The differences at
the other resonance frequency locations are less than 5%, which is expected because of the
approximations used for clamped–clamped plates 20. For the different frequency–response
functions considered, the model captures the phase information well. This indicates that the
model developed here is suitable for model-based feedforward control schemes, where phase
information is important.
To bring forth the importance of considering a spherical wave propagation, the pressure

field results at the microphone locations Mic. 1, Mic. 2, and Mic. 3 are considered. For Mic. 3, in
Figs. 11 and 12, the results obtained for spherical wave incidence and plane wave incidence are
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shown, respectively. In Fig. 11, the vibration modes with even indices (such as the (2,1) mode at
73.7Hz and the (4,3) mode at 319.5Hz) and the acoustic modes with nonzero x and y indices
(such as the (1,0,0) mode at 281.3Hz and the (0,1,0) mode at 375.1Hz) are excited. As mentioned
before, these modes cannot be excited by plane wave incidence, and this point can be inferred
from Fig. 12. Comparisons with experimental results show that the phase changes are better
predicted by the spherical wave propagation model. As seen in Fig. 10, the even-indexed vibration
modes are not predicted at the location of the microphone Mic.1, due to its symmetric location
with respect to the panel; however, the vibration mode (1,0,0) is predicted as a result of taking the
spherical wave field into account. It is also pointed out that the time delays associated with the
results shown in both Figs. 10 and 11 are different from those associated with a plane wave
incidence, since the nominal values of R in Eq. (31) are different from the corresponding vertical
separations among the sound source, the panel, and the observation point. For example, the time
delay associated with Eq. (28) is 2.6ms, corresponding to a separation of 89.91 cm, which is
2.28 cm larger than the vertical separation between the loudspeaker and the panel. This time delay
difference cannot be predicted by using a plane wave approximation. In Fig. 13, the analytical
prediction of the pressure field at the microphone location Mic. 2 is shown in the cases of a
spherical wave field and a plane wave field. It is clear from the magnitude and phase results shown
 GMic. 2, as
: analytical predictions
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in this figure that when a plane wave field model is used, the responses of many vibration and
acoustic modes are not predicted.
In this effort, a structural–acoustics model has been developed for studying transmission of

sound through a flexible panel into an enclosure. The model is used to describe the pressure fields
inside and outside the three-dimensional rectangular enclosure, as well as the flexible panel
vibrations. It has been shown how the model can address general cases such as spherical wave
incidence and radiation into an infinite external acoustic space. In particular, the importance of
considering a spherical wave incidence instead of a plane wave incidence is pointed out.
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